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Figure 1: RAVEN is an interactive system that empowers BLV users to query and modify 3D scenes via natural language. The
above image illustrates an example of an accessibility modification: A) A low-vision user types in a modification text. B) The
system integrates runtime code generation LLM agent with dynamic scene information and instructions to apply accessibility-
enhancing changes at runtime. C) The system compiles LLM-produced code to achieve modification while providing spoken

response to the user.

ABSTRACT

As virtual 3D environments become prevalent, enabling presence
and spatial exploration, equitable access is crucial for blind and
low-vision (BLV) users who face challenges with spatial aware-
ness, navigation, and interaction. To address these, previous work
explored enhancing visual information or supplementing it with
auditory and haptic modalities. However, these methods are static
and might risk steep learning curves. In this work, we present
RAVEN, a system that responds to query or modification prompts
from BLV users to improve the accessibility of a 3D virtual scene
at runtime. The system integrates LLMs with semantic scene data
and runtime code generation to support iterative, dialogue-based
user interactions. We evaluated the system with eight BLV people,
uncovering key insights into the strengths and shortcomings of
generative Al-driven accessibility in virtual 3D environments.
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1 INTRODUCTION

Virtual 3D environments have become pervasive, enabling rich in-
teractions, offering users a sense of presence and spatial exploration
[5, 15]. However, with their increased adoption arises the impera-
tive of ensuring inclusive and equitable access, particularly for blind
and low-vision (BLV) users who encounter substantial challenges
in spatial understanding, navigation, and object interaction [29].

To address these challenges, prior work has proposed tools that
modify or supplement visual information using alternative modali-
ties, such as audio descriptions [11], haptic feedback [13, 32], and
enhanced visual effects tailored for low vision [33]. Systems like
SceneWeaver [2] offer users greater agency over when and how
to consume scene descriptions. Commercial platforms have also
adopted accessibility features - such as high-contrast display modes
and spatial audio - to accommodate BLV players [4, 20].

However, current accessibility approaches share a fundamental
limitation: they are largely developer-driven and static - such as
fixed mappings for color changes or auditory overlays - and often
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fail to meet the nuanced, evolving needs of individual users [9].
They also typically require users to learn specific control mappings
or adjust settings in non-intuitive ways, resulting in steep learning
curves and limited support for dynamic, context-specific adaptation.

Recent advances in generative Al, particularly large language
models (LLMs), present possibilities for new, flexible, and conver-
sational interaction paradigms. Prior work has leveraged LLMs
for accessibility tasks ranging from querying visual information
[1] to runtime scene editing [14]. These developments suggest the
potential for LLM-powered tools to equip BLV users to directly
query and adapt 3D scenes using natural language, bypassing rigid
developer-defined workflows and expanding user agency.

To leverage this emerging capability, we present RAVEN, an
interactive system that empowers BLV users to engage with 3D
scenes via conversational natural language interaction. RAVEN
supports both scene querying (e.g., “What’s around me?”) and
accessibility-related modifications (e.g., “Make the table brighter”
or “Move the bench closer”). The system integrates LLMs with
semantic scene data and runtime code generation tools to apply
accessibility-enhancing changes at runtime, while also providing
spoken responses to user queries. Interaction is iterative, allow-
ing users to refine modifications through follow-up prompts in a
dialogue-like flow.

2 SYSTEM DESIGN

RAVEN enables blind and low-vision (BLV) users to interact with
3D virtual environments using natural language. It supports two
core capabilities: (1) querying information about the scene, and
(2) modifying the scene in real time to improve accessibility. While
the system is designed to handle a broad range of natural language
prompts, this work focuses on six core prompt categories that
reflect common accessibility needs and provide a structured basis
for evaluation. We first introduce these categories (section 2.1), then
describe the system architecture and technical components that
support them (section 2.2).

2.1 Accessibility Improvement Categories

RAVEN supports prompts belonging to a set of improvement cat-
egories informed by prior research on 3D accessibility for BLV
individuals [21, 22, 25, 26, 30, 33]. Four categories target visual ac-
cessibility, and two focus on auditory interaction. Our system is
optimized to support both queries and modifications in each of
these categories.

Visual Categories. These allow users to adapt the visual pre-
sentation of the scene to better match their preferences:

(1) Color: Retrieve and modify color schemes or colors for spe-
cific objects to aid recognition, especially for users with color
blindness [21, 30].

(2) Object Location: Retrieve information about locations of ob-
jects such as furniture, characters or players, and reposition
them to simplify navigation and object interaction, inspired
by assistive game toolkits [27].

(3) Size: Resize objects or in-scene text to enhance visibility and
readability [22, 26].

(4) Scene Brightness: Provide information about scene bright-
ness, and adjust lighting across the scene, or for specific
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light sources, to accommodate individual comfort and visual
sensitivity [33].

Auditory Categories. These features enhance awareness of
environmental elements using sound:

(1) Volume: Increase or decrease the volume of specific sound
sources to isolate or emphasize key elements [7, 23].

(2) Pitch: Alter pitch to distinguish sounds more effectively,
highlight key content, or emulate common screen reader
cues [7, 12, 19, 28].

2.2 RAVEN Architecture

RAVEN operates on minimally annotated 3D scenes. At develop-
ment time, designers label key objects by attaching metadata that
includes each object’s name, visual and auditory descriptions, and
whether it is physical (e.g., a bench) or non-physical (e.g., back-
ground music). Users interact with RAVEN by typing natural lan-
guage prompts to query (e.g., "what is the color of the bench")
or modify the scene (e.g., "make the text bigger"). To account for
limited screen reader support in Unity environments, the system
self-voices text input, prompts, and responses using built-in speech
synthesis [16]. When a user submits a prompt, RAVEN follows a
three-stage processing pipeline (fig. 1):
(1) Dynamic Information Retrieval extracts the semantic
scene graph (SSG) with updated object properties.
(2) Prompt Constructor builds an LLM-compatible prompt
using the user query, SSG, and task-specific instructional
prompts.

(3) Runtime Generation and Compilation, powered by Gromit [14],

generates and applies code for scene modifications or pro-
vides a verbal response.

See fig. 1 for the system workflow and an example use case.

2.2.1  Dynamic Information Retrieval. RAVEN uses a semantic scene
graph (SSG) similar to that described in [14], capturing a struc-
tured view of scene elements. For each object, the SSG stores its
name, developer-provided descriptions (visual, auditory, functional),
scripts, center point, scale, and child object relationships.

To support accessibility-related queries and modifications, the
system augments the SSG with dynamic properties, including:
(1) object color (HEX code), (2) text content and font size, (3) relative
position or distance from the player, (4) light source density, and
(5) audio source properties (mute/unmute, volume, pitch, range).

2.2.2  Prompt Constructor. The Prompt Constructor synthesizes
the user’s input, scene context, and prompt-engineered instructions
into a structured prompt for the LLM. To ensure the LLM produces
contextually grounded and trustworthy outputs, especially in a
critical domain like accessibility, we employ two key strategies:

Accessibility Support Instructions. To compensate for LLM
limitations in applying accessibility design principles contextu-
ally [10], we embed rules that guide the model to reason about:
(1) object position and direction, (2) size of objects and text, and
(3) lighting and sound features.

Error Prevention Instructions. To reduce hallucinations and

gracefully handle vague or unsupported requests, the system: (1) prompts

the user for clarification if input is under-specified, (2) provides
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corrective suggestions when users report issues (e.g., “it’s not work-
ing”), and (3) communicates feature limitations (e.g., no magnifiers
or captioning) using an explicit out-of-scope list.

2.2.3  Runtime Generation and Compilation. RAVEN uses Gromit [14,

18], an open-source framework for real-time behavior generation
in Unity. When given a constructed prompt, the LLM generates a
textual response and, if applicable, Unity script code targeting a
specific object. Gromit compiles and attaches the script at runtime,
applying the modification in the scene. It then returns the LLM’s
textual response, which RAVEN reads aloud to the user. For our
implementation, we upgraded Gromit to use GPT-4o for enhanced
reasoning and generation quality.

3 USER STUDY

To assess the utility of on-demand accessibility modifications and
the perceived usability of our system, we conducted a user eval-
uation of the RAVEN system with BLV participants across three
scenes with increasingly open-ended tasks.

3.1 Scenes

We describe below the scenes that shaped participants’ experiences
with our system. Each scene involved tasks that offered progres-
sively more open-ended interaction. The demo experience of this
work consists of these scenes.

Scene 1, Guided Tutorial: In Scene 1 (see 2a), we provided a
clear demonstration of the system and the categories in a simple
scene resembling a room in a game. The researcher demonstrated
the six categories (section 2.1), then invited participants to try
similar prompts themselves to learn and explore the system.

Scene 2, Task-Driven Exploration: In Scene 2 (see 2b), we
observed how participants applied the accessibility categories to
achieve goals within a task-oriented context. This scene, set in a
virtual park with nature items and sound sources, included six pre-
defined tasks aligned with the categories from the guided tutorial.
(See suppl. material.)

Scene 3, Open-Ended Exploration: In Scene 3 (see 2c), we
sought to understand how participants used the system within
an open-ended context. The scene featured a relatively complex
environment - a spaceship-themed room with 16 objects of various
shapes and colors, including three sound sources. Participants were
given ten minutes to freely explore the scene and use RAVEN to
support their accessibility needs in this process.

3.2 Method

We recruited eight BLV participants (5 men, 3 women) with an
average age of 36.6 years and a diverse range of visual abilities. Two
participants were blind with no vision, two had light perception, and
four identified as low-vision or visually impaired. The study was
conducted in person and lasted 1.5 hours per participant. The scenes
ran as Unity projects on the researcher’s device, and participants
interacted with the system using a keyboard and stereo headphones.

Each session began with the three scene experiences, followed
by a survey collecting Likert-scale ratings on the perceived use-
fulness of the six accessibility categories, confidence in achieving
accessibility improvements, system intuitiveness, and responses
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(a) Scene 1

(c) Scene 3

Figure 2: Screenshots of the three scenes used in our evalua-
tion. Scene 1is a simple demo with basic elements and sound
sources. Scene 2 is a park scene with cats and ambient nature
sounds. Scene 3 is a spaceship-themed room with furniture,
objects, and themed audio.

to the SUS questionnaire [6]. At the end of each session, we con-
ducted a semi-structured interview to gather qualitative feedback
on participants’ experiences.

For analysis, we used descriptive statistics to summarize the
questionnaire data and conducted two sets of reflexive thematic
analysis [8] done by two coders on both interview transcripts and
the prompts used. We also calculated the prompt success rate and
categorized the reasons for errors.

3.3 Findings

On average, participants agreed that they felt confident using the
tool to make scenes accessible to them (mean=4.1, SD=0.8, on a
scale of 1: highly disagree to 5: highly agree). They also found the
system intuitive to use (mean=4.3, SD=0.9, on a scale of 1: very
unintuitive to 5: very intuitive). The average SUS usability score
was 79.7, indicating good usability [3] with room for improvement.
Participants’ subjective feedback contextualize these ratings. Some
(N=2) highlighted the system’s robustness in handling typos (P2),
responding to ambiguous queries (P5), and processing compound
requests (P5). Others (N=3) credited the intuitiveness of the natural
language interface, which provides improved learnability compared
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to existing methods with keyboard shortcuts. Several participants
(N=2) also appreciated the system’s open-endedness. As P8 noted,
“the sky was the limit in some of the things that I could ask [the system]
to do”.

Despite positive feedback, the system’s error rate emerged as
a key limitation. Out of 336 valid prompts, 253 (75.3%) resulted in
correct query responses or intended modifications. Nine prompts
were correctly flagged by the LLM as “out of scope,” while 74 (22.0%)
failed. Among these, 14 were intent errors, where the system mis-
interpreted the user’s request. For instance, when P4 requested to
“extinguish the torch”, the torch light was turned off but the burning
sound persisted. The other 60 were technical errors, where the re-
sponse did not match the scene state or the intended modification
was not executed. These errors stemmed from LLM hallucinations,
the model’s lack of awareness regarding its access limitations (e.g.,
actual volume or pitch of audio files), or failures during code com-
pilation.

Most participants (N=7) expressed concerns about these errors.
As P4 observed: “Right now, it’s not so foolproof as to say I completely
trust it.” Participants pointed to a lack of transparency in failure
cases and emphasized the need for more trustworthy verification
methods. They also suggested several usability improvements, in-
cluding: adaptive detail levels in scene descriptions (N=>5), support
for functional object interactions (N=3), undo capabilities (P4), more
support for creative authoring (P2), and the ability to add localized
sound cues for object identification (P1).

4 LIMITATIONS AND FUTURE WORK

While our findings highlight the promise of RAVEN in supporting
BLV users through conversational accessibility modifications, they
also reveal key limitations that inform directions for future work.
First, the system is not yet ready for deployment in real-world
applications due to a non-trivial error rate. Improving reliability will
require advances in error prevention, safeguarding, and verification.
One promising direction is the use of multiple Al agents to cross-
validate outputs - such as ensemble methods [17, 31] or multi-
agent debate strategies [24] - to enhance both correctness and
user trust. Second, RAVEN currently lacks an understanding of
object affordances. While it can retrieve an object’s location and
appearance, it does not reason about how that object can be used
(e.g., recognizing a bench as a seating surface or localizing where to
sit). Future work could incorporate richer semantic models of object
functionality to support deeper interaction. Finally, our study was
conducted in a controlled lab setting with predefined exploratory
tasks. It did not evaluate performance in real-world 3D applications
or time-sensitive environments (e.g., action or multiplayer games).
Long-term, in-the-wild studies will be critical for assessing practical
viability and sustained accessibility impact.

5 CONCLUSION

RAVEN explores a new frontier in accessible interaction - enabling
blind and low-vision users to query and modify 3D virtual envi-
ronments through natural language. By combining semantic scene
understanding with real-time code generation, RAVEN shifts acces-
sibility from a static, developer-defined feature to an interactive,
user-driven experience. Our evaluation with eight BLV participants
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demonstrated the promise of this approach: users found the sys-
tem intuitive, flexible, and empowering. However, the study also
surfaced key limitations, particularly around reliability, error trans-
parency, and the lack of affordance reasoning. As generative Al
becomes more embedded in interactive systems, ensuring it sup-
ports accessibility with both accuracy and trust is essential. RAVEN
marks an early step toward that goal, pointing to a future where
immersive environments are not only richer, but fundamentally
more inclusive.
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